Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Alignment dependent chemisorption of vibrationally excited CH4(3) on Ni(100), Ni(110), and Ni(111)
 
research article

Alignment dependent chemisorption of vibrationally excited CH4(3) on Ni(100), Ni(110), and Ni(111)

Yoder, Bruce  
•
Bisson, Régis  
•
Hundt, Phil Morten  
Show more
2011
Journal of Chemical Physics

We present a stereodynamics study of the dissociative chemisorption of vibrationally excited methane on the (100), (110), and (111) planes of a nickel single crystal surface. Using linearly polarized infrared excitation of the antisymmetric C–H stretch normal mode vibration (ν 3 ), we aligned the angular momentum and C–H stretch amplitude of CH4 (ν 3 ) in the laboratory frame and measured the alignment dependence of state-resolved reactivity of CH4 for the ν3 = 1, J = 0–3 quantum states over a range of incident translational energies. For all three surfaces studied, in-plane alignment of the C–H stretch results in the highest dissociation probability and alignment along the surface normal in the lowest reactivity. The largest alignment contrast between the maximum and minimum reactivity is observed for Ni(110), which has its surface atoms arranged in close-packed rows separated by one layer deep troughs. For Ni(110), we also probed for alignment effects relative to the direction of the Ni rows. In-plane C–H stretch alignment perpendicular to the surface rows results in higher reactivity than parallel to the surface rows. The alignment effects on Ni(110) and Ni(100) are independent of incident translational energy between 10 and 50 kJ/mol. Quantum state-resolved reaction probabilities are reported for CH4 (ν 3 ) on Ni(110) for translational energies between 10 and 50 kJ/mol.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

_ojpstmp_stampPdf_d_09T09:18_JCPSA6_135_22_224703_1.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

Size

1.33 MB

Format

Adobe PDF

Checksum (MD5)

0c4e919dc5428bb4050c76ebf786ffff

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés