Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The lightest scalar in theories with broken supersymmetry
 
research article

The lightest scalar in theories with broken supersymmetry

Brizi, Leonardo  
•
Scrucca, Claudio A.  
2011
Journal of High Energy Physics

We study the scalar mass matrix of general supersymmetric theories with local gauge symmetries, and derive an absolute upper bound on the lightest scalar mass. This bound can be saturated by suitably tuning the superpotential, and its positivity therefore represents a necessary and sufficient condition for the existence of metastable vacua. It is derived by looking at the subspace of all those directions in field space for which an arbitrary supersymmetric mass term is not allowed and scalar masses are controlled by supersymmetry-breaking splitting effects. This subspace includes not only the direction of supersymmetry breaking, but also the directions of gauge symmetry breaking and the lightest scalar is in general a linear combination of fields spanning all these directions. We present explicit results for the simplest case of theories with a single local gauge symmetry. For renormalizable gauge theories, the lightest scalar is a combination of the Goldstino partners and its square mass is always positive. For more general non-linear sigma models, on the other hand, the lightest scalar can involve also the Goldstone partner and its square mass is not always positive.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

suffpub.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

268.32 KB

Format

Adobe PDF

Checksum (MD5)

23fd03ab1d8f1a2a75a60f16fe0791cb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés