Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Distributed Constraint Optimization under Stochastic Uncertainty
 
conference paper

Distributed Constraint Optimization under Stochastic Uncertainty

Léauté, Thomas  
•
Faltings, Boi  
2011
Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI'11)
Twenty-Fifth Conference on Artificial Intelligence (AAAI'11)

In many real-life optimization problems involving multiple agents, the rewards are not necessarily known exactly in advance, but rather depend on sources of exogenous uncertainty. For instance, delivery companies might have to coordinate to choose who should serve which foreseen customer, under uncertainty in the locations of the customers. The framework of Distributed Constraint Optimization under Stochastic Uncertainty was proposed to model such problems; in this paper, we generalize this formalism by introducing the concept of evaluation functions that model various optimization criteria. We take the example of three such evaluation functions, expectation, consensus, and robustness, and we adapt and generalize two previous algorithms accordingly. Our experimental results on a class of Vehicle Routing Problems show that incomplete algorithms are not only cheaper than complete ones (in terms of simulated time, Non-Concurrent Constraint Checks, and information exchange), but they are also often able to find the optimal solution. We also show that exchanging more information about the dependencies of their respective cost functions on the sources of uncertainty can help the agents discover higher-quality solutions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Leaute2011a.pdf

Access type

openaccess

Size

538.25 KB

Format

Adobe PDF

Checksum (MD5)

75f4036fa2b1754d8415d462c842f9d9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés