Metal complexation by dissolved organic matter, as humic acids, is considered to decrease metal bioavailability by lowering the free metal ion concentration. However, dissolved organic matter adsorption on cell surfaces can modify cell membrane properties, which can also influence metal uptake. Copper and lead accumulation and internalisation by the marine diatom Thalassiosira weissflogii were studied in the absence and presence of humic acids, and adsorption of humic acids to cell surfaces was evaluated. Both Pb and Cu intracellular concentrations decreased in the presence of humic acids according to labile metal concentrations measured by anodic stripping voltammetry, whereas total (intracellular plus adsorbed) metal content was enhanced in the presence of humic acids, probably owing to enhanced metal plus humics adsorption to cell surfaces. The results of the present work stress the importance of differentiating between intracellular and total cellular metal in bioavailability studies, and suggest that the silica frustule of diatoms represents a barrier against humic acids effects on cell membranes.