Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Trajectory-based Calibration Method for Stochastic Motion Models
 
conference paper

A Trajectory-based Calibration Method for Stochastic Motion Models

Di Mario, Ezequiel  
•
Mermoud, Grégory  
•
Mastrangeli, Massimo  
Show more
2011
2011 Ieee/Rsj International Conference On Intelligent Robots And Systems
IEEE/RSJ International Conference on Intelligent Robots and Systems

In this paper, we present a quantitative, trajectory-based method for calibrating stochastic motion models of water-floating robots. Our calibration method is based on the Correlated Random Walk (CRW) model, and consists in minimizing the Kolmogorov-Smirnov (KS) distance between the step length and step angle distributions of real and simulated trajectories generated by the robots. First, we validate this method by calibrating a physics-based motion model of a single 3-cm-sized robot floating at a water/air interface under fluidic agitation. Second, we extend the focus of our work to multi-robot systems by performing a sensitivity analysis of our stochastic motion model in the context of Self-Assembly ( SA). In particular, we compare in simulation the effect of perturbing the calibrated parameters on the predicted distributions of self-assembled structures. More generally, we show that the SA of water-floating robots is very sensitive to even small variations of the underlying physical parameters, thus requiring real-time tracking of its dynamics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

IROS2011_FINAL.pdf

Access type

openaccess

Size

1.69 MB

Format

Adobe PDF

Checksum (MD5)

5ba36f137708a81cfc2c8cccb043153b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés