Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Exact Local Reconstruction Algorithms for Signals with Finite Rate of Innovation
 
conference paper not in proceedings

Exact Local Reconstruction Algorithms for Signals with Finite Rate of Innovation

Dragotti, Pier Luigi  
•
Vetterli, Martin  
•
Blu, Thierry
2006
IEEE International Conference on Image Processing

Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, piecewise polynomial or piecewise sinusoidal signals, and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling theory does not enable a perfect reconstruction of such signals since they are not bandlimited. In this paper, we show that many signals with finite rate of innovation can be sampled and perfectly reconstructed using kernels of compact support and a local reconstruction algorithm. The class of kernels that we can use is very rich and includes functions satisfying strang-fix conditions, exponential splines and functions with rational Fourier transforms. Extension of such results to the 2-dimensional case are also discussed and an application to image super-resolution is presented

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

04106772.pdf

Access type

openaccess

Size

4.43 MB

Format

Adobe PDF

Checksum (MD5)

5bcc1060198a6d8325016d9c8772c59f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés