Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Enhanced bromate control during ozonation: The chlorine-ammonia process
 
research article

Enhanced bromate control during ozonation: The chlorine-ammonia process

Galli, S.
•
von Gunten, U.  
•
Buffle, M.O.
2004
Environmental Science & Technology

Potentially carcinogenic bromate forms during the ozonation of bromide-containing waters. Some water treatment facilities have had to use ammonia addition and pH depression to minimize bromate formation, but these processes may prove to be insufficient to comply with upcoming regulations. The chlorine-ammonia process (Cl-2-NH3), consisting of prechlorination followed by ammonia addition prior to ozonation is shown to cause a 4-fold decrease in bromate formed when compared to the ammonia-only process. Experiments revealed three key mechanisms: (i) oxidation by HOCl of Br- to HOBr and its subsequent masking by NH3 as NH2Br; (ii) decrease of HO. exposure through halogenation of Dissolved Natural Organic Matter (DNOM) by HOCl and scavenging of HO. by NH2Cl; and (iii) DNOM acting as a bromine sink after oxidation of Br- to HOBr. At an ozone exposure of 6 mg/L(.)min and pH 8, conventional ozonation of Lake Zurich water spiked with 560 mug/L Br- formed 35 mug/L BrO3-, whereas the application of the Cl-2-NH3 process resulted in 5 mug/L BrO3-. Additional pH depression to pH 6 further decreased bromate formation by a factor of 4. Trihalomethanes (THM) and cyanogen chloride (CNCl), that may form during prechlorination and monochloramination, respectively, were well below regulatory limits. The chlorine-ammonia process holds strong promise for water treatment facilities struggling with a bromate formation problem during ozonation.

  • Details
  • Metrics
Type
research article
DOI
10.1021/es0352146
Web of Science ID

WOS:000224234100046

Author(s)
Galli, S.
von Gunten, U.  
Buffle, M.O.
Date Issued

2004

Published in
Environmental Science & Technology
Volume

38

Start page

5187

End page

5195

Subjects

Bromide-Containing Waters

•

Radical Reactions

•

Hypobromous Acid

•

Drinking-Water

•

Thm Formation

•

Kinetics

•

Monochloramine

•

Ozone

•

Oxidation

•

Ratios

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LTQE  
Available on Infoscience
July 1, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69231
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés