Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: Relevance to drinking water treatment
 
research article

Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: Relevance to drinking water treatment

Vu, N.D.
•
Ammann, A.
•
Le, V.C.
Show more
2006
Environmental Science & Technology

Kinetics and mechanisms of As(III) oxidation by free available chlorine (FAC-the sum of HOCl and OCl-), ozone (O-3), and monochloramine (NH2Cl) were investigated in buffered reagent solutions. Each reaction was found to be first order in oxidant and in As(III), with 1:1 stoichiometry. FAC-As(III) and O-3-As(III) reactions were extremely fast, with pH-dependent, apparent second-order rate constants, k"(app), of 2.6 (+/- 0.1) x 10(5) M-1 s(-1) and 1.5 (+/- 0.1) x 10(6) M-1 s(-1) at pH 7, whereas the NH2Cl-As(III) reaction was relatively slow (k "(app)) 4.3 (+/- 1.7) x 10(-1) M-1 s(-1) at pH 7). Experiments conducted in real water samples spiked with 50 mu g/L As(III) (6.7 x 10(-7) M) showed that a 0.1 mg/L Cl-2 (1.4 x 10(-6) M) dose as FAC was sufficient to achieve depletion of As(III) to < 1 mu g/L As(III) within 10 s of oxidant addition to waters containing negligible NH3 concentrations and DOC concentrations < 2 mg-C/L. Even in a water containing 1 mg-N/L (7.1 x 10(-5) M) as NH3, > 75% As(III) oxidation could be achieved within 10 s of dosing 1-2 mg/L Cl-2 (1.4-2.8 x 10(-5) M) as FAC. As(III) residuals remaining in NH3-containing waters 10 s after dosing FAC were slowly oxidized (t(1/2) >= 4 h) in the presence of NH2Cl formed by the FAC-NH3 reaction. Ozonation was sufficient to yield > 99% depletion of 50 mu g/L As(III) within 10 s of dosing 0.25 mg/L O-3 (5.2 x 10(-6) M) to real waters containing < 2 mg-C/L of DOC, while 0.8 mg/LO3 (1.7 x 10(-5) M) was sufficient for a water containing 5.4 mg-C/L of DOC. NH3 had negligible effect on the efficiency of As(III) oxidation by O-3, due to the slow kinetics of the O-3-NH3 reaction at circumneutral pH. Time-resolved measurements of As(III) loss during chlorination and ozonation of real waters were accurately modeled using the rate constants determined in this investigation.

  • Details
  • Metrics
Type
research article
DOI
10.1021/es0524999
Web of Science ID

WOS:000237525500029

Author(s)
Vu, N.D.
Ammann, A.
Le, V.C.
Kissner, R.
Pham, H.V.
Cao, T.H.
Berg, M.
Von Gunten, U.  
Dodd, M.C.
Date Issued

2006

Published in
Environmental Science & Technology
Volume

40

Start page

3285

End page

3292

Subjects

Nonmetal Redox Kinetics

•

Hypochlorous Acid Reactions

•

Arsenic Occurrence

•

Hydrogen Sulfite

•

Ozonation

•

Groundwater

•

Bangladesh

•

Contamination

•

Speciation

•

Bromide

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LTQE  
Available on Infoscience
July 1, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69213
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés