Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sorption and catalytic oxidation of Fe(II) at the surface of calcite
 
research article

Sorption and catalytic oxidation of Fe(II) at the surface of calcite

Mettler, Suzanne
•
Wolthers, Mariette
•
Charlet, Laurent
Show more
2009
Geochimica Et Cosmochimica Acta

The effect of sorption and coprecipitation of Fe(II) with calcite on the kinetics of Fe(II) oxidation was investigated. The interaction of Fe(II) with calcite was studied experimentally in the absence and presence of oxygen. The sorption of Fe(II) on calcite occurred in two distinguishable steps: (a) a rapid adsorption step (seconds-minutes) was followed by (b) a slower incorporation (hours-weeks). The incorporated Fe(II) could not be remobilized by a strong complexing agent (phenanthroline or ferrozine) but the dissolution of the outmost calcite layers with carbonic acid allowed its recovery. Based on results of the latter dissolution experiments, a stoichiometry of 0.4 mol% Fe:Ca and a mixed carbonate layer thickness of 25 nm (after 168 It equilibration) were estimated. Fe(II) sorption on calcite could be successfully described by a surface adsorption and precipitation model (Comans & Middelburg, GCA 51 (1987), 2587) and surface complexation modeling (Van Cappellen et al., GCA 57 (1993), 3505; Pokrovsky et al., Langmuir 16 (2000), 2677). The surface complex model required the consideration of two adsorbed Fe(II) surface species, >CO3Fe+ and >CO3FeCO3H0. For the formation of the latter species, a stability constant is being suggested. The oxidation kinetics of Fe(II) in the presence of calcite depended on the equilibration time of aqueous Fe(II) with the mineral prior to the introduction of oxygen. If pre-equilibrated for >15 h, the oxidation kinetics was comparable to a calcite-free system (t(1/2) = 145 +/- 15 min). Conversely, if Fe(II) was added to an aerated calcite suspension, the rate of oxidation was higher than in the absence of calcite (t(1/2) = 41 +/- 1 min and t(1/2) = 100 +/- 15 min, respectively). This catalysis was due to the greater reactivity of the adsorbed Fe(II) species, >CO3FeCO3H0, for which the species specific rate constant was estimated. (c) 2009 Elsevier Ltd. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.gca.2009.01.003
Web of Science ID

WOS:000264518500003

Author(s)
Mettler, Suzanne
Wolthers, Mariette
Charlet, Laurent
von Gunten, Urs  
Date Issued

2009

Published in
Geochimica Et Cosmochimica Acta
Volume

73

Start page

1826

End page

1840

Subjects

Carbonates Solution Interface

•

Ferrous Iron

•

Natural-Waters

•

Ground-Water

•

Precipitation Model

•

Ionic Interactions

•

Chlorine Dioxide

•

Aquatic Systems

•

Organic-Matter

•

Metal Sorption

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LTQE  
Available on Infoscience
July 1, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69172
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés