Evolution of algal toxicity during (photo)oxidative degradation of diuron

In the aquatic environment and in engineered water treatment systems, organic contaminants can undergo oxidative and photochemical transformations. For an overall risk assessment, the toxicity of the resulting transformation products has to be investigated. In this study, the toxicity of degradation products of diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) formed during its degradation by four (photo)oxidative processes (direct phototransformation, triplet-induced photosensitized oxidation, oxidation by hydroxyl radicals and ozone) was investigated in buffered aqueous solution. The toxicity was evaluated using the combined algae test with Pseudokirchneriella subcapitata that determines both, specific inhibition of photosynthesis and inhibition of the growth rate. The comparison between evolution of toxicity and degradation kinetics indicated that the toxicity during all studied processes was caused predominantly by diuron whereas the formation of degradation products did not contribute to the mixture toxicity. This implies that, if any more toxic transformation products than diuron were formed, their concentration was not sufficiently high to affect the mixture toxicity, which was dominated by the parent compound diuron. On this account, no further studies on identification of degradation products and their toxicity are needed. This study presents an example of a systematic and simple first tier method to assess the toxicity of degradation products. (C) 2010 Elsevier B.V. All rights reserved.

Published in:
Aquatic Toxicology, 101, 466-473

 Record created 2011-07-01, last modified 2018-03-18

Rate this document:

Rate this document:
(Not yet reviewed)