Stable -Synuclein Oligomers Strongly Inhibit Chaperone Activity of the Hsp70 System by Weak Interactions with J-domain Co-chaperones
alpha-Synuclein aggregation and accumulation in Lewy bodies are implicated in progressive loss of dopaminergic neurons in Parkinson disease and related disorders. In neurons, the Hsp70s and their Hsp40-like J-domain co-chaperones are the only known components of chaperone network that can use ATP to convert cytotoxic protein aggregates into harmless natively refolded polypeptides. Here we developed a protocol for preparing a homogeneous population of highly stable beta-sheet enriched toroid-shaped alpha-Syn oligomers with a diameter typical of toxic pore-forming oligomers. These oligomers were partially resistant to in vitro unfolding by the bacterial Hsp70 chaperone system (DnaK, DnaJ, GrpE). Moreover, both bacterial and human Hsp70/Hsp40 unfolding/refolding activities of model chaperone substrates were strongly inhibited by the oligomers but, remarkably, not by unstructured alpha-Syn monomers even in large excess. The oligomers acted as a specific competitive inhibitor of the J-domain co-chaperones, indicating that J-domain co-chaperones may preferably bind to exposed bulky misfolded structures in misfolded proteins and, thus, complement Hsp70s that bind to extended segments. Together, our findings suggest that inhibition of the Hsp70/Hsp40 chaperone system by alpha-Syn oligomers may contribute to the disruption of protein homeostasis in dopaminergic neurons, leading to apoptosis and tissue loss in Parkinson disease and related neurodegenerative diseases.
18.pdf
openaccess
1.41 MB
Adobe PDF
5b6961c9f550c1f09e51ad2a61f78dc4