Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Quantitative Test of Hamilton's Rule for the Evolution of Altruism
 
research article

A Quantitative Test of Hamilton's Rule for the Evolution of Altruism

Waibel, Markus  
•
Floreano, Dario  
•
Keller, Laurent
2011
PLOS Biology

The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb − c>0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

journal.pbio.1000615.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

533.1 KB

Format

Adobe PDF

Checksum (MD5)

d742939f32a11f566634ad6b3b912cce

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés