Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimization of thin film silicon solar cells on highly textured substrates
 
research article

Optimization of thin film silicon solar cells on highly textured substrates

Despeisse, Matthieu  
•
Battaglia, Corsin  
•
Boccard, Mathieu  
Show more
2011
physica status solidi (a)

Doped layers made of nanostructured silicon phases embedded in a silicon oxide matrix were implemented in thin film silicon solar cells. Their combination with optimized deposition processes for the silicon intrinsic layers is shown to allow for an increased resilience of the cell design to the substrate texture, with high electrical properties conserved on rough substrates. The presented optimizations thus permit turning the efficient light trapping provided by highly textured front electrodes into increased cell efficiencies, as reported for single junction cells and for amorphous silicon (a-Si)/microcrystalline silicon tandem cells. Initial and stabilized efficiencies of 12.7 and 11.3%, respectively, are reported for such tandem configuration implementing a 1.1 mu m thick microcrystalline silicon bottom cell.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper_605.pdf

Access type

restricted

Size

445.09 KB

Format

Adobe PDF

Checksum (MD5)

6e5fe681a0170fa50c72c0a19baa03e7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés