Action Filename Description Size Access License Resource Version
Show more files...


Numerical algorithms for solving the continuous-time algebraic Riccati matrix equation on a distributed memory parallel computer are considered. In particular, it is shown that the Schur method, based on computing the stable invariant subspace of a Hamiltonian matrix, can be parallelized in an efficient and scalable way. Our implementation employs the state-of-the-art library ScaLAPACK as well as recently developed parallel methods for reordering the eigenvalues in a real Schur form. Some experimental results are presented, confirming the scalability of our implementation and comparing it with an existing implementation of the matrix sign iteration from the PLiCOC library.