Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms
 
research article

A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms

Benner, P.
•
Ezzatti, P.
•
Kressner, D.  
Show more
2011
Parallel Computing

We describe a hybrid Lyapunov solver based on the matrix sign function, where the intensive parts of the computation are accelerated using a graphics processor (GPU) while executing the remaining operations on a general-purpose multi-core processor (CPU). The initial stage of the iteration operates in single-precision arithmetic, returning a low-rank factor of an approximate solution. As the main computation in this stage consists of explicit matrix inversions, we propose a hybrid implementation of Gauß-Jordan elimination using look-ahead to overlap computations on GPU and CPU. To improve the approximate solution, we introduce an iterative refinement procedure that allows to cheaply recover full double-precision accuracy. In contrast to earlier approaches to iterative refinement for Lyapunov equations, this approach retains the low-rank factorization structure of the approximate solution. The combination of the two stages results in a mixed-precision algorithm, that exploits the capabilities of both general-purpose CPUs and many-core GPUs and overlaps critical computations. Numerical experiments using real-world data and a platform equipped with two Intel Xeon QuadCore processors and an Nvidia Tesla C1060 show a significant efficiency gain of the hybrid method compared to a classical CPU implementation. © 2011.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2009-40.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

279.42 KB

Format

Adobe PDF

Checksum (MD5)

b2b71a5d233c8282ed22376b13e62dea

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés