Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Computing periodic deflating subspaces associated with a specified set of eigenvalues
 
research article

Computing periodic deflating subspaces associated with a specified set of eigenvalues

Granat, R.
•
Kågström, B.
•
Kressner, D.  
2007
BIT Numerical Mathematics

We present a direct method for reordering eigenvalues in the generalized periodic real Schur form of a regular K-cyclic matrix pair sequence (A k ,E k ). Following and generalizing existing approaches, reordering consists of consecutively computing the solution to an associated Sylvester-like equation and constructing K pairs of orthogonal matrices. These pairs define an orthogonal K-cyclic equivalence transformation that swaps adjacent diagonal blocks in the Schur form. An error analysis of this swapping procedure is presented, which extends existing results for reordering eigenvalues in the generalized real Schur form of a regular pair (A,E). Our direct reordering method is used to compute periodic deflating subspace pairs corresponding to a specified set of eigenvalues. This computational task arises in various applications related to discrete-time periodic descriptor systems. Computational experiments confirm the stability and reliability of the presented eigenvalue reordering method. © 2007 Springer Science + Business Media B.V.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

gkk2.pdf

Access type

openaccess

Size

777.67 KB

Format

Adobe PDF

Checksum (MD5)

c75d9a975782d885faf60a156b7ba677

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés