Journal article

Structured condition numbers for invariant subspaces

Invariant subspaces of structured matrices are sometimes better conditioned with respect to structured perturbations than with respect to general perturbations. Sometimes they are not. This paper proposes an appropriate condition number c(S), for invariant subspaces subject to structured perturbations. Several examples compare c(S) with the unstructured condition number. The examples include block cyclic, Hamiltonian, and orthogonal matrices. This approach extends naturally to structured generalized eigenvalue problems such as palindromic matrix pencils.

Related material