Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Bandwidth-Constrained Mapping of Cores onto NoC Architectures
 
conference paper

Bandwidth-Constrained Mapping of Cores onto NoC Architectures

Murali, Srinivasan  
•
De Micheli, Giovanni  
2004
Proceedings of Design, Automation, & Test in Europe (DATE)
Design, Automation, & Test in Europe (DATE)

We address the design of complex monolithic systems, where processing cores generate and consume a varying and large amount of data, thus bringing the communication links to the edge of congestion. Typical applications are in the area of multi-media processing. We consider a mesh-based Networks on Chip (NoC) architecture, and we explore the assignment of cores to mesh cross-points so that the traffic on links satisfies bandwidth constraints. A single-path deterministic routing between the cores places high bandwidth demands on the links. The bandwidth requirements can be significantly reduced by splitting the traffic between the cores across multiple paths. In this paper, we present NMAP, a fast algorithm that maps the cores onto a mesh NoC architecture under bandwidth constraints, minimizing the average communication delay. The NMAP algorithm is presented for both single minimum-path routing and split-traffic routing. The algorithm is applied to a benchmark DSP design and the resulting NoC is built and simulated at cycle accurate level in SystemC using macros from the ?pipes library. Also, experiments with six video processing applications show significant savings in bandwidth and communication cost for NMAP algorithm when compared to existing algorithms.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

01269002.pdf

Access type

openaccess

Size

320.79 KB

Format

Adobe PDF

Checksum (MD5)

fe4bba11d9fe8f3d2212abbb91a9c8d3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés