We present a new approach for large scale multi-view stereo matching, which is designed to operate on ultra high resolution image sets and efficiently compute dense 3D point clouds. We show that, by using a robust descriptor for matching purposes and high resolution images, we can skip the computationally expensive steps other algorithms require. As a result, our method has low memory requirements and low computational complexity while producing 3D point clouds containing virtually no outliers. This makes it exceedingly suitable for large scale reconstruction. The core of our algorithm is the dense matching of image pairs using DAISY descriptors, implemented so as to eliminate redundancies and optimize memory access. We use a variety of challenging data sets to validate and compare our results against other algorithms.