The BCR-ABL tyrosine kinase inhibitor imatinib represents the current frontline therapy in chronic myeloid leukemia. Because many patients develop imatinib resistance, 2 second-generation drugs, nilotinib and dasatinib, displaying increased potency against BCR-ABL were developed. To predict potential side effects and novel medical uses, we generated comprehensive drug-protein interaction profiles by chemical proteomics for all 3 drugs. Our studies yielded 4 major findings: (1) The interaction profiles of the 3 drugs displayed strong differences and only a small overlap covering the ABL kinases. (2) Dasatinib bound in excess of 30 Tyr and Ser/Thr kinases, including major regulators of the immune system, suggesting that dasatinib might have a particular impact on immune function. (3) Despite the high specificity of nilotinib, the receptor tyrosine kinase DDR1 was identified and validated as an additional major target. (4) The oxidoreductase NQO2 was bound and inhibited by imatinib and nilotinib at physiologically relevant drug concentrations, representing the first nonkinase target of these drugs.