Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Two-phase modelling of hot tearing in aluminium alloys using a semi-coupled approach
 
research article

Two-phase modelling of hot tearing in aluminium alloys using a semi-coupled approach

Mathier, Vincent  
•
Drezet, Jean-Marie  
•
Rappaz, Michel  
2007
Modelling and Simulation in Materials Science and Engineering

Hot tearing, one of the most severe defects observed in castings, is due to both tensile stresses and lack of interdendritic liquid feeding in the mushy zone. In order to predict this phenomenon, the two-phase averaged conservation equations for mass and momentum must be solved in the mushy region of the material. In recent contributions, M’Hamdi et al (2002 Metall. Mater. Trans. A 33 2081–93) proposed a strongly coupled resolution scheme for this set of equations. The solution of the mechanical problem is obtained using a rheological model established by Ludwig et al (2005 Metall. Mater. Trans. A 36 1525–35). In the present contribution, the problem is addressed with a slightly different approach. The same rheological model is used for the solid skeleton (i.e. saturated porous medium treatment), but the influence of liquid pressure is neglected at this stage. This assumption allows for a weakly coupled resolution scheme in which the mechanical problem is first solved alone using ABAQUS® and user subroutines. Then, the liquid pressure is calculated separately accounting for the viscoplastic deformation of the porous solid and solidification shrinkage. This is done with a code previously developed for porosity calculations which uses a refined mesh in the mushy zone (Pequet et al 2002 Metall. Mater. Trans. A 33 2095–106). The stability of the numerical tools is presented and the modelling approach is then applied to a virtual experiment. Finally, two approaches are examined to study the hot tearing tendency in this problem.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mathier-MSMSE-2007.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

178.28 KB

Format

Adobe PDF

Checksum (MD5)

2111294f0e1a2c3cd052584678602d21

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés