Journal article

Efficient and reproducible mammalian cell bioprocesses without probes and controllers?

Bioprocesses for recombinant protein production with mammalian cells are typically controlled for several physicochemical parameters including the pH and dissolved oxygen concentration (DO) of the culture medium. Here we studied whether these controls are necessary for efficient and reproducible bioprocesses in an orbitally shaken bioreactor (OSR). Mixing, gas transfer, and volumetric power consumption (P(V)) were determined in both a 5-L OSR and a 3-L stirred-tank bioreactor (STR). The two cultivation systems had a similar mixing intensity, but the STR had a lower volumetric mass transfer coefficient of oxygen (k(L)a) and a higher P(V) than the OSR. Recombinant CHO cell lines expressing either tumor necrosis factor receptor as an Fc fusion protein (TNFR:Fc) or an anti-RhesusD monoclonal antibody were cultivated in the two systems. The 5-L OSR was operated in an incubator shaker with 5% CO(2) in the gas environment but without pH and DO control whereas the STR was operated with or without pH and DO control. Higher cell densities and recombinant protein titers were obtained in the OSR as compared to both the controlled and the non-controlled STRs. To test the reproducibility of a bioprocess in a non-controlled OSR, the two CHO cell lines were each cultivated in parallel in six 5-L OSRs. Similar cell densities, cell viabilities, and recombinant protein titers along with similar pH and DO profiles were achieved in each group of replicates. Our study demonstrated that bioprocesses can be performed in OSRs without pH or DO control in a highly reproducible manner, at least at the scale of operation studied here.


Related material