Analysis of a finite volume element method for the Stokes problem

In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.


Published in:
Numerische Mathematik, 118, 4, 737-764
Year:
2011
Publisher:
Springer Verlag
ISSN:
0029-599X
Keywords:
Laboratories:




 Record created 2011-02-11, last modified 2018-01-28

External links:
Download fulltextURL
Download fulltextn/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)