Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Biomechanical properties of decellularized porcine common carotid arteries
 
research article

Biomechanical properties of decellularized porcine common carotid arteries

Roy, Sylvain  
•
Silacci, Paolo
•
Stergiopulos, Nikolaos  
2005
American journal of physiology. Heart and circulatory physiology

To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure >2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.

  • Details
  • Metrics
Type
research article
DOI
10.1152/ajpheart.00564.2004
Web of Science ID

WOS:000231875300030

PubMed ID

15908462

Author(s)
Roy, Sylvain  
Silacci, Paolo
Stergiopulos, Nikolaos  
Date Issued

2005

Published in
American journal of physiology. Heart and circulatory physiology
Volume

289

Issue

4

Start page

H1567

End page

76

Subjects

Models, Cardiovascular

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LHTC  
Available on Infoscience
December 16, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/62258
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés