Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots
 
conference paper

Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots

Ridha, Philipp
•
Li, Lianhe
•
Rossetti, Marco
Show more
2008
Optical And Quantum Electronics
Workshop on Physics and Applications of Semiconductor Lasers/Instabilities, Patterns and Spatial Solitons (PHASE 2007/IPSSO 2007)

Quantum dots (QDs) have a potential for application in semiconductor optical amplifiers (SOAs), due to their high saturation power related to the low differential gain, fast gain recovery and wide gain spectrum compared to quantum wells. Besides all advantages, QDs realized by Stranski-Krastanov growth mode have a flat shape which leads to a gain anisotropy and a related transverse magnetic (TM) and -electric (TE) polarization dependence as compared to bulk material. This has so far prevented their applications in SOAs. It has been suggested that control of optical polarization anisotropy of the QD can be obtained through QD shape engineering, in closely stacked or columnar QDs (CQDs). To this aim, we have fabricated and tested SOA structures based on closely-stacked and columnar QDs. Closely-stacked InAs QDs with 4, 6 and 10 nm GaAs spacer showed a minor improvement in the ratio of TM and TE integrated electroluminescence (EL) over standard QDs along with a strong reduction in efficiency. In contrast, a large improvement was obtained in CQDs, depending on the number of stacked submonolayers which can be attributed to the more symmetric shape of columnar QDs. A relatively small spectral separation (Delta E similar to 21 meV) between TE- and TM-EL peaks has been observed showing that heavy- and light hole-like states, respectively are energetically close in these QDs. These results indicate that columnar QDs have a significant potential for polarization-independent QD SOA.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

11082_2007_Article_9173.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

990.89 KB

Format

Adobe PDF

Checksum (MD5)

64c25b3047efe6187d7ff2ec9b8c1015

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés