Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via Subband Regression
 
research article

The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via Subband Regression

Unser, Michael  
•
Van De Ville, Dimitri  
2008
Ieee Transactions On Image Processing

A distinction is usually made between wavelet bases and wavelet frames. The former are associated with a one-to-one representation of signals, which is somewhat constrained but most efficient computationally. The latter are over-complete, but they offer advantages in terms of flexibility (shape of the basis functions) and shift-invariance. In this paper, we propose a framework for improved wavelet analysis based on an appropriate pairing of a wavelet basis with a mildly redundant version of itself (frame). The processing is accomplished in four steps: 1) redundant wavelet analysis, 2) wavelet-domain processing, 3) projection of the results onto the wavelet basis, and 4) reconstruction of the signal from its nonredundant wavelet expansion. The wavelet analysis is pyramid-like and is obtained by simple modification of Mallat's filterbank algorithm (e.g., suppression of the down-sampling in the wavelet channels only). The key component of the method is the subband regression filter (Step 3) which computes a wavelet expansion that is maximally consistent in the least squares sense with the redundant wavelet analysis. We demonstrate that this approach significantly improves the performance of soft-threshold wavelet denoising with a moderate increase in computational cost. We also show that the analysis filters in the proposed framework can be adjusted for improved feature detection; in particular, a new quincunx Mexican-hat-like wavelet transform that is fully reversible and essentially behaves the (gamma/2)th Laplacian of a Gaussian.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

unser0814.pdf

Access type

openaccess

Size

3.08 MB

Format

Adobe PDF

Checksum (MD5)

9d262e7ee73a84ec5922d48aac7be44f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés