Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. False Discovery Rate for Wavelet-Based Statistical Parametric Mapping
 
research article

False Discovery Rate for Wavelet-Based Statistical Parametric Mapping

Van De Ville, Dimitri  
•
Unser, Michael  
2008
Ieee Journal Of Selected Topics In Signal Processing

Model-based statistical analysis of functional magnetic resonance imaging (fMRI) data relies on the general linear model and statistical hypothesis testing. Due to the large number of intracranial voxels, it is important to deal with the multiple comparisons problem. Many fMRI analysis tools utilize Gaussian random field theory to obtain a more sensitive thresholding; this typically involves Gaussian smoothing as a preprocessing step. Wavelet-based statistical parametric mapping (WSPM) is an alternative method to obtain parametric maps from non-smoothed data. It relies on adaptive thresholding of the parametric maps in the wavelet domain, followed by voxel-wise statistical testing. The procedure is conservative; it uses Bonferroni correction for strong type I error control. Yet, its sensitivity is close to SPM's due to the excellent denoising properties of the wavelet transform. Here, we adapt the false discovery rate (FDR) principle to the WSPM framework. Although explicit p-values cannot be obtained, we show that it is possible to retrieve the FDR threshold by a simple iterative scheme. We then validate the approach with an event-related visual stimulation task. Our results show better sensitivity with preservation of spatial resolution; i.e., activation clusters align well with the gray matter structures in the visual cortex. The spatial resolution of the activation maps is even high enough to easily identify a voxel that is very likely to be caused by the draining-vein effect.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

vandeville0804.pdf

Access type

openaccess

Size

1.21 MB

Format

Adobe PDF

Checksum (MD5)

f6bcc892cbff758277cb53a3d3616cea

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés