Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Class of Integrable Flows on the Space of Symmetric Matrices
 
research article

A Class of Integrable Flows on the Space of Symmetric Matrices

Bloch, Anthony M.
•
Brinzanescu, Vasile
•
Iserles, Arieh
Show more
2009
Communications In Mathematical Physics

For a given skew symmetric real n x n matrix N, the bracket X, Y = XNY - YNX defines a Lie algebra structure on the space Sym(n, N) of symmetric n x n real matrices and hence a corresponding Lie-Poisson structure. The purpose of this paper is to investigate the geometry, integrability, and linearizability of the Hamiltonian system. (X) over dot = [X-2, N], or equivalently in Lax form, the equation. (X) over dot = [X, XN + NX] on this space along with a detailed study of the Poisson geometry itself. If N has distinct eigenvalues, it is proved that this system is integrable on a generic symplectic leaf of the Lie-Poisson structure of Sym(n, N). This is established by finding another compatible Poisson structure.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

BlBrIsMaRa2009.pdf

Access type

openaccess

Size

491.61 KB

Format

Adobe PDF

Checksum (MD5)

9e618dc88cca95a1d613cf32edb29fb5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés