Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Interval propagation and search on directed acyclic graphs for numerical constraint solving
 
research article

Interval propagation and search on directed acyclic graphs for numerical constraint solving

Vu, Xuan-Ha  
•
Schichl, Hermann
•
Sam-Haroud, Djamila
2009
Journal Of Global Optimization

The fundamentals of interval analysis on directed acyclic graphs (DAGs) for global optimization and constraint propagation have recently been proposed in Schichl and Neumaier (J. Global Optim. 33, 541-562, 2005). For representing numerical problems, the authors use DAGs whose nodes are subexpressions and whose directed edges are computational flows. Compared to tree-based representations [Benhamou et al. Proceedings of the International Conference on Logic Programming (ICLP'99), pp. 230-244. Las Cruces, USA (1999)], DAGs offer the essential advantage of more accurately handling the influence of subexpressions shared by several constraints on the overall system during propagation. In this paper we show how interval constraint propagation and search on DAGs can be made practical and efficient by: (1) flexibly choosing the nodes on which propagations must be performed, and (2) working with partial subgraphs of the initial DAG rather than with the entire graph. We propose a new interval constraint propagation technique which exploits the influence of subexpressions on all the constraints together rather than on individual constraints. We then show how the new propagation technique can be integrated into branch-and-prune search to solve numerical constraint satisfaction problems. This algorithm is able to outperform its obvious contenders, as shown by the experiments.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10898_2008_Article_9386.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

913.37 KB

Format

Adobe PDF

Checksum (MD5)

00b37c1290417955675edabbc48a937f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés