Infoscience

Journal article

Noninvasive metal contacts in chemically derived graphene devices

We study the properties of gold contacts on chemically derived graphene devices by scanning photocurrent microscopy and gate-dependent electrical transport measurements. In the as-fabricated devices, negligible potential barriers are found at the gold/graphene interface, reflecting the noninvasive character of the contacts. Device annealing above 300 degrees C leads to the formation of potential barriers at the contacts concomitant with metal-induced p-type doping of the sheet as a consequence of the diffusion of gold from the electrodes. The transfer characteristics of the chemically derived graphene devices point toward the suppression of Klein tunneling in this material.

Fulltext

Related material