Action Filename Description Size Access License Resource Version
Show more files...


The amplitude and the phase of the diffracted far field depends on polarization when the diffracting structure is comparable to or less than the wavelength. When the far-field amplitude and the phase of one polarization with respect to the orthogonal polarization is measured, small changes in the structure can be measured. To make the far-field polarization measurements, we design a detector that measures the relative polarization amplitude and the phase in quadrature; We predict numerically and verify experimentally the polarization amplitude and the phase for an optical disc and a set of gratings with varying depth. Our results show that this measurement technique is sensitive to small variations in the diffracting structure and that it can be useful in applications such as critical dimension and overlay metrology in microelectronics fabrication. (C) 1997 Optical Society of America.