Journal article

Learning Low-Dimensional Signal Models

Sampling, coding, and streaming even the most essential data, e.g., in medical imaging and weather-monitoring applications, produce a data deluge that severely stresses the avail able analog-to-digital converter, communication bandwidth, and digital-storage resources. Surprisingly, while the ambient data dimension is large in many problems, the relevant information in the data can reside in a much lower dimensional space. This observation has led to several important theoretical and algorithmic developments under different low-dimensional modeling frameworks, such as compressive sensing (CS), matrix completion, and general factor-model representations. These approaches have enabled new measurement systems, tools, and methods for information extraction from dimensionality-reduced or incomplete data. A key aspect of maximizing the potential of such techniques is to develop appropriate data models. In this article, we investigate this challenge from the perspective of nonparametric Bayesian analysis.

Related material