Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fast Bounding Box Estimation based Face Detection
 
conference paper not in proceedings

Fast Bounding Box Estimation based Face Detection

Subburaman, Venkatesh Bala
•
Marcel, Sébastien  
2010
ECCV, Workshop on Face Detection: Where we are, and what next?

The sliding window approach is the most widely used technique to detect an object from an image. In the past few years, classifiers have been improved in many ways to increase the scanning speed. Apart from the classifier design (such as cascade), the scanning speed also depends on number of different factors (such as grid spacing, and scale at which the image is searched). When the scanning grid spacing is larger than the tolerance of the trained classifier it suffers from low detections. In this paper we present a technique to reduce the number of miss detections while increasing the grid spacing when using the sliding window approach for object detection. This is achieved by using a small patch to predict the bounding box of an object within a local search area. To achieve speed it is necessary that the bounding box prediction is comparable or better than the time it takes in average for the object classifier to reject a subwindow. We use simple features and a decision tree as it proved to be efficient for our application. We analyze the effect of patch size on bounding box estimation and also evaluate our approach on benchmark face database (CMU+MIT). We also report our results on the new FDDB dataset [1]. Experimental evaluation shows better detection rate and speed with our proposed approach for larger grid spacing when compared to standard scanning technique.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Subburaman_ECCVWORKSHOP-2_2010.pdf

Access type

openaccess

Size

212.61 KB

Format

Adobe PDF

Checksum (MD5)

4b7f5b8de3f70a0bc60c2fcca9c4c8a1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés