Infoscience

Conference paper

Mining Human Location-Routines Using a Multi-Level Approach to Topic Modeling

In this work we address the problem of modeling varying time duration sequences for large-scale human routine discovery from cellphone sensor data using a multi-level approach to probabilistic topic models. We use an unsupervised learning approach that discovers human routines of varying durations ranging from half-hourly to several hours. Our methodology can handle large sequence lengths based on a principled procedure to deal with potentially large routine-vocabulary sizes, and can be applied to rather naive initial vocabularies to discover meaningful location-routines. We successfully apply the model to a large, real-life dataset, consisting of 97 cellphone users and 16 months of their location patterns, to discover routines with varying time durations.

    Reference

    • EPFL-CONF-155009

    Record created on 2010-11-17, modified on 2016-08-08

Related material