Automatic Construction and Multi-level Visualization of Semantic Trajectories

With the prevalence of GPS-embedded mobile devices, enormous amounts of mobility data are being collected in the form of trajectory - a stream of (x,y,t) points. Such trajectories are of heterogeneous entities - vehicles, people, animals, parcels etc. Most applications primarily analyze raw trajectory data and extract geometric patterns. Real-life applications however, need a far more comprehensive, semantic representation of trajectories. This paper demonstrates the automatic construction and visualization capabilities of SeMiTri - a system we built that exploits 3rd party information sources containing geographic information, to semantically enrich trajectories. The construction stack encapsulates several spatio-temporal data integration and mining techniques to automatically compute and annotate all meaningful parts of heterogeneous trajectories. The visualization interface exhibits different levels of data abstraction, from low-level raw trajectories (i.e. the initial GPS trace) to high-level semantic trajectories (i.e. the sequence of interesting places where moving objects have passed and/or stayed).


Publié dans:
18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS)
Présenté à:
18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS), San Jose, CA, USA, November, 2010
Année
2010
Mots-clefs:
Laboratoires:


Note: Le statut de ce fichier est:


 Notice créée le 2010-11-04, modifiée le 2019-12-05

n/a:
gis2010_yan - Télécharger le documentPDF
p524_Yan - Télécharger le documentPDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)