Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effects of wave forcing on a subterranean estuary
 
research article

Effects of wave forcing on a subterranean estuary

Xin, Pei
•
Robinson, Clare
•
Li, Ling
Show more
2010
Water Resources Research

Wave and tide are important forcing factors that typically co-exist in coastal environments. A numerical study was conducted to investigate individual and combined effects of these forces on flow and mixing processes in a near-shore subterranean estuary. A hydrodynamic model based on the shallow water equations was used to simulate dynamic sea level oscillations driven by wave and tide. The oscillating sea levels determined the seaward boundary condition of the coastal aquifer, where variably-saturated, variable-density flow was modeled. The simulation results showed that waves induced an onshore upward tilt in the phase-averaged sea level (wave set-up). The resulting hydraulic gradient generated pore water circulations in the near-shore zone of the coastal aquifer, which led to formation of an upper saline plume (USP) similar to that due to tides. However, mixing of recirculating seawater in the USP with underlying fresh groundwater was less intensive under the high-frequency wave oscillations. In the case of combined forcing, wave-induced circulations coupled with the intra-tidal flows strengthened the averaged, circulating pore water flows in the near-shore zone over the tidal period. The circulating flows increased exchange between the subterranean estuary and ocean, contributing 61% of the total submarine groundwater discharge for the simulated condition in comparison with the 40% and 49% proportions caused by the same but separate tidal and wave forcing, respectively. The combined forces also created a more extensive USP with the freshwater discharge zone shifted further seaward. The freshwater flow paths in the intertidal subterranean estuary were altered with a significant increase of associated transit times. The interplay of wave and tide led to increased mixing between discharging fresh groundwater and recirculating seawater. These results demonstrated the complexity of near-shore groundwater systems and have implications for future investigations on the fate of land-sourced chemicals in the subterranean estuary prior to discharge to the ocean.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

WRR.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

1.76 MB

Format

Adobe PDF

Checksum (MD5)

108cfc0cacf6933ad2f22053d9a2eca0

Loading...
Thumbnail Image
Name

2010WR009632.pdf

Access type

restricted

Size

1.77 MB

Format

Adobe PDF

Checksum (MD5)

7eaea0a07ecdaf0211a62b17f05c1d79

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés