Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Supersymmetry-breaking loops from analytic continuation into superspace
 
research article

Supersymmetry-breaking loops from analytic continuation into superspace

Arkani-Hamed, N.
•
Giudice, G. F.
•
Luty, M. A.
Show more
1998
Physical Review D [1970-2015]

We extend to all orders in perturbation theory a method to calculate supersymmetry-breaking effects by analytic continuation of the renormalization group into superspace. A central observation is that the renormalized gauge coupling can be extended to a real vector superfield, thereby including soft breaking effects in the gauge sector. We explain the relation between this vector superfield coupling and the "holomorphic" gauge coupling, which is a chiral superfield running only at one loop. We consider these issues for a number of regulators, including dimensional reduction. With this method, the renormalization group equations for soft-supersymmetry-breaking terms are directly related to supersymmetric beta functions and anomalous dimensions to all orders in perturbation theory. However, the real power of the formalism lies in computing finite soft breaking effects corresponding to high-loop component calculations. We prove that the gaugino mass in gauge-mediated supersymmetry breaking is "screened" from strong interactions in the messenger sector. We present a complete next-to-leading calculation of gaugino masses (two loops) and sfermion masses (three loops! in minimal gauge mediation and several other calculations of phenomenological relevance. [S0556-2821(98)06319-X].

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

file-152080.pdf

Access type

openaccess

Size

418.64 KB

Format

Adobe PDF

Checksum (MD5)

55e5948f10cab11ec36672b6e621de5b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés