Neutronics investigations for the lower part of a westinghouse SVEA-96+ assembly

Accurate critical experiments have been performed for the validation of total fission (Ftot) and 238U-capture (C8) reaction rate distributions obtained with CASMO-4, HELIOS, BOXER, and MCNP4B for the lower axial region of a real Westinghouse SVEA-96 + fuel assembly. The assembly comprised fresh fuel with an average 235U enrichment of 4.02 wt%, a maximum enrichment of 4.74 wt%, 14 burnable-absorber fuel pins, and full-density water moderation. The experimental configuration investigated was core 1A of the LWR-PROTEUS Phase 1 project, where 61 different fuel pins, representing 64% of the assembly, were gamma-scanned individually. Calculated (C) and measured (E) values have been compared in terms of C/E distributions. For Ftot, the standard deviations are 1.2% for HELIOS, 0.9% for CASMO-4, 0.8% for MCNP4B, and 1.7% for BOXER. Standard deviations of 1.1% for HELIOS, CASMO-4, and MCNP4B and 1.2% for BOXER were obtained in the case of C8. Despite the high degree of accuracy observed on the average, it was found that the five burnable-absorber fuel pins investigated showed a noticeable underprediction of Ftot, quite systematically, for the deterministic codes evaluated (average C/E for the burnable-absorber fuel pins in the range 0.974 to 0.988, depending on the code).

Published in:
Nuclear Science and Engineering, 141, 1, 32-45
American Nuclear Society
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

 Record created 2010-09-17, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)