Proposal strategies for joint state-space tracking with particle filters

A proposal function determines the random particle support of a particle filter. When this support is distributed close to the true target density, filter's estimation performance increases for a given number of particles. In this paper, a proposal strategy for joint state-space tracking using particle filters is given. The state-spaces are assumed Markovian and not-exact; however, each state-space is assumed to sufficiently describe the underlying phenomenon. The joint tracking is achieved by carefully placing the random support of the joint filter to where the final posterior is likely to lie. Computer simulations demonstrate improved performance and robustness of the joint state-space through the proposed strategy.


Presented at:
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, March 18-23, 2005
Year:
2005
Laboratories:




 Record created 2010-09-07, last modified 2018-03-17

n/a:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)