Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transcription of the sulA-ompA region of Escherichia coli during the SOS response and the role of an antisense RNA molecule
 
research article

Transcription of the sulA-ompA region of Escherichia coli during the SOS response and the role of an antisense RNA molecule

Cole, S T  
•
Honoré, N
1989
Molecular microbiology

The transcriptional pattern of the 22 min region of the Escherichia coli chromosome containing the linked sulA and ompA genes, which encode an SOS-inducible inhibitor of cell division and a constitutively expressed, major outer membrane protein, respectively, has been re-examined. During normal growth, the sulA gene was repressed whereas the ompA gene produced a stable 1250 nucleotide transcript. Counter-transcription of sulA occurred from a promoter situated in the sulA-ompA intergenic region and the product of this transcriptional circuit, named isf, is a 353 nucleotide untranslated RNA. Since the isf RNA is complementary to the 3'-end of the sulA transcript, it could modulate sulA function by serving as an anti-messenger. On induction of the SOS-response, massive transcription of sulA took place, resulting in the 'silencing' of the isf gene, production of an abundant approximately 615 nucleotide sulA mRNA and a novel hybrid transcript of approximately 2100 nucleotides encoding both the SulA and OmpA proteins. Production of the latter RNA species, caused by transcription reading through the sulA terminator, the intergenic region and the coding sequences, was accompanied by a decrease in the abundance of the ompA mRNA as a result of promoter occlusion. However, the amount of OmpA protein produced was only slightly reduced.

  • Details
  • Metrics
Type
research article
DOI
10.1111/j.1365-2958.1989.tb00220.x
PubMed ID

2473377

Author(s)
Cole, S T  
Honoré, N
Date Issued

1989

Published in
Molecular microbiology
Volume

3

Issue

6

Start page

715

End page

22

Subjects

DNA Repair

•

Genes, Bacterial

•

SOS Response (Genetics)

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPCOL  
Available on Infoscience
September 7, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/53276
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés