Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multidrug resistance in Mycobacterium tuberculosis
 
research article

Multidrug resistance in Mycobacterium tuberculosis

Heym, B
•
Cole, S T  
1997
International journal of antimicrobial agents

All but one of the four major mechanisms of resistance to antimicrobial agents-inactivation of the drug, altered cell wall permeability or drug efflux, drug titration due to target overproduction, and alteration of the target by mutation-appear to be employed by Mycobacterium tuberculosis in its resistance to components of short course chemotherapy regimens. To date no enzymes capable of inactivating any of the frontline drugs have been found. The most common resistance mechanism is alteration of the target leading to inadequate drug binding, or drug activation, as a result of mutations in chromosomal genes. This occurs in the case of the specific antituberculous drugs isoniazid, pyrazinamide and ethionamide as well as in resistance to the broad-spectrum antibiotics, rifampicin, streptomycin and the fluoroquinolones. Overproduction of the drug target also appears to lead to resistance to isoniazid and ethionamide whereas changes in permeability, or the activation of antibiotic-efflux systems, may contribute to the low-level resistance of the tubercle bacillus to streptomycin and fluoroquinolones.

  • Details
  • Metrics
Type
research article
DOI
10.1016/S0924-8579(96)00356-1
PubMed ID

18611785

Author(s)
Heym, B
Cole, S T  
Date Issued

1997

Published in
International journal of antimicrobial agents
Volume

8

Issue

1

Start page

61

End page

70

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPCOL  
Available on Infoscience
September 7, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/53223
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés