We extend the analysis of [1] of the Standard Model Higgs inflation accounting for two-loop radiative corrections to the effective potential. As was expected, higher loop effects result in some modification of the interval for allowed Higgs masses mmin < mH < mmax, which somewhat exceeds the region in which the Standard Model can be considered as a viable effective field theory all the way up to the Planck scale. The dependence of the index ns of scalar perturbations on the Higgs mass is computed in two different renormalization procedures, associated with the Einstein (I) and Jordan (II) frames. In the procedure I the predictions of the spectral index of scalar fluctuations and of the tensor-to-scalar ratio practically do not depend on the Higgs mass within the admitted region and are equal to ns = 0.97 and r = 0.0034 respectively. In the procedure II the index ns acquires the visible dependence on the Higgs mass and and goes out of the admitted interval at mH below mmin. We compare our findings with the results of [2]. © SISSA 2009.