Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence
 
research article

Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence

Muñoz-Elías, Ernesto J
•
Upton, Anna M
•
Cherian, Joseph
Show more
2006
Molecular microbiology

Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The DeltaprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or DeltaprpDC bacteria.

  • Details
  • Metrics
Type
research article
DOI
10.1111/j.1365-2958.2006.05155.x
PubMed ID

16689789

Author(s)
Muñoz-Elías, Ernesto J
Upton, Anna M
Cherian, Joseph
McKinney, John D  
Date Issued

2006

Published in
Molecular microbiology
Volume

60

Issue

5

Start page

1109

End page

22

Subjects

Citric Acid

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPKIN  
Available on Infoscience
September 7, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/52817
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés