Infrared spectroscopy provides a means to determine the intrinsic geometrical structures of molecules. Here we present a novel spectroscopic method that uses superfluid helium nanodroplets to record IR spectra of cold molecular ions, in this particular case aniline cations. The method is based on the detection of ions that are ejected from the helium droplets following vibrational excitation of these ions. We find that spectra can be recorded with a high sensitivity and that they exhibit only a small matrix shift. The widths of the individual transitions depend on the excited vibrational level and are thought to be related to the interaction of the ion with the surrounding helium solvent shells.