Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. k-Edge-Connectivity: Approximation and LP Relaxation
 
conference paper

k-Edge-Connectivity: Approximation and LP Relaxation

Pritchard, David  
2011
Approximation and Online Algorithms. WAOA 2010
ALGO 2010: 8th Workshop on Approximation and Online Algorithms (WAOA)

This paper's focus is the following family of problems, denoted k-ECSS, where k denotes a positive integer: given a graph (V, E) and costs for each edge, find a minimum-cost subset F of E such that (V, F) is k-edge-connected. For k=1 it is the spanning tree problem which is in P; for every other k it is APX-hard and has a 2-approximation. Moreover, assuming P != NP, it is known that for unit costs, the best possible approximation ratio is 1 + Theta(1/k) for k>1. Our first main result is to determine the analogous asymptotic ratio for general costs: we show there is a constant eps>0 so that for all k>1, finding a (1+eps)-approximation for k-ECSS is NP-hard. Thus we establish a gap between the unit-cost and general-cost versions, for large enough k. Next, we consider the multi-subgraph cousin of k-ECSS, in which we are allowed to buy arbitrarily many copies of any edges (i.e., F is now a multi-subset of E, with parallel copies having the same cost as the original edge). Not so much is known about this natural variant, but we conjecture that a (1 + Theta(1/k))-approximation algorithm exists, and we describe an approach based on its naive linear programming relaxation (LP) and graph decompositions. The LP is well-known --- it is essentially the same as the Held-Karp TSP and the undirected LP for Steiner tree --- and in order to further our understanding, we give a family of extreme points for this LP with exponentially bad fractionality.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

kecss-waoa.pdf

Access type

openaccess

Size

199.62 KB

Format

Adobe PDF

Checksum (MD5)

2adee134a86fac6d355dc1eb485a7b13

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés