Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Fixed-Order Robust Controller Design by Convex Optimization Using Spectral Models
 
doctoral thesis

Fixed-Order Robust Controller Design by Convex Optimization Using Spectral Models

Galdos Sanz de Galdeano, Gorka
2010

This thesis proposes a new method to design fixed-order controllers in frequency domain using convex optimization. The method is based on the shaping of open-loop transfer function in the Nyquist diagram with infinity norm constraints on weighted closed-loop transfer functions. A parametric model is not required in this method as it directly uses frequency-domain data. Furthermore, systems with multi-model uncertainty as well as systems with frequency-domain uncertainties can be considered. Fixed-order linearly parameterized controllers are designed with the proposed method for single-input single-output (SISO) linear time-invariant plants. The shaping of the open-loop transfer function is performed based on the minimization of the difference with a desired open-loop transfer function under H∞ constraints on the closed-loop sensitivity functions. Since these constraints represent a nonconvex set in the space of the controller parameters, an inner convex approximation of this set is proposed using the desired open-loop transfer function. This approximation makes the problem of robust fixed-order controller design a convex optimization problem. An extension of the method is proposed to design two-degree-of-freedom (2DOF) controllers for SISO plants. The method is also extended to tune fixed-order linearly parameterized multivariable controllers for multiple-input multiple-output (MIMO) linear time-invariant plants where the stability of the closed-loop system is guaranteed using Gershgorin bands. The control problem is solved only using a finite number of frequency-domain samples. However, the stability and performance conditions between frequency samples are also verified if a frequency-domain uncertainty is considered. It is shown that this adds some conservatism to the solution. The proposed frequency-domain method has been tested on many simulation examples. The method has been applied to a flexible transmission benchmark for robust controller design giving extremely good results. Additionally, the method has also been implemented on an experimental high-precision double-axis positioning system. These results show the effectiveness of the proposed methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH4785.pdf

Access type

openaccess

Size

1.58 MB

Format

Adobe PDF

Checksum (MD5)

69b4d915e44e2131c466d0d3ac07225d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés