Implementation and characterization of a quartz tuning fork based probe consisted of discrete resonators for dynamic mode atomic force microscopy

The quartz tuning fork based probe {e.g., Akiyama et al. [Appl. Surf. Sci. 210, 18 (2003)]}, termed "A-Probe," is a self-sensing and self-actuating (exciting) probe for dynamic mode atomic force microscope (AFM) operation. It is an oscillatory force sensor consisting of the two discrete resonators. This paper presents the investigations on an improved A-Probe: its batch fabrication and assembly, mounting on an AFM head, electrical setup, characterization, and AFM imaging. The fundamental features of the A-Probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an A-Probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. Imaging of an electronic chip, a compact disk stamper, carbon nanotubes, and Si beads is demonstrated with this probe at ambient conditions in the so-called frequency modulation mode. A special probe substrate, which can snap on a receptacle fixed on an AFM head, and a special holder including a preamplifier electronic are introduced. We hope that the implementation and characterization of the A-Probe described in this paper will provide hints for new scanning probe techniques. 2010 American Institute of Physics. [doi:10.1063/1.3455219]

Published in:
Review of Scientific Instruments, 81, 6, 063706
American Institute of Physics

 Record created 2010-07-01, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)