Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river
 
research article

An observation-based stochastic model for sediment and vegetation dynamics in the floodplain of an Alpine braided river

Perona, P.  
•
Molnar, P.
•
Savina, M.
Show more
2009
Water Resources Research

Riparian vegetation dynamics in Alpine rivers are to a large extent driven by the timing and magnitude of floods which inundate the floodplain, transport sediment, erode the river bed, and create and destroy suitable germination sites. Here we present a stochastic approach for studying sediment-vegetation dynamics lumped at the floodplain scale and driven by stochastic flood disturbances. The premise of the model is that floods erode riparian vegetation in the inundated part of the floodplain and expose bare sediment surfaces. In the absence of subsequent flooding these surfaces are gradually recolonized. The stochastic nature of the disturbance process and the deterministic rate of vegetation colonization are described by a Poisson arrival of floods and a process equation which treats the floodplain erosion and vegetation colonization processes, respectively. An analytical solution is developed to obtain the probability density function of the exposed sediment area. The model is applied to the Maggia River in Switzerland, where it reproduces the changes in riparian vegetation cover observed from aerial photographs with an absolute error less than 5%. The model has potential as a tool to study the impacts of changes in the disturbance regime on sediment and vegetation dynamics Copyright 2009 by the American Geophysical Union.

  • Details
  • Metrics
Type
research article
DOI
10.1029/2008WR007550
Author(s)
Perona, P.  
Molnar, P.
Savina, M.
Burlando, P.
Date Issued

2009

Publisher

American Geophysical Union

Published in
Water Resources Research
Volume

45

Article Number

W09418

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
AHEAD  
Available on Infoscience
June 28, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/51341
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés