Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.