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Abstract. We study a problem posed in Björk and Christensen (1999): does

there exist any nontrivial interest rate model which is consistent with the
Nelson–Siegel family? They show that within the HJM framework with deter-

ministic volatility structure the answer is no.

In this paper we give a generalized version of this result including stochastic
volatility structure. For that purpose we introduce the class of consistent state

space processes, which have the property to provide an arbitrage-free interest

rate model when representing the parameters of the Nelson–Siegel family. We
characterize the consistent state space Itô processes in terms of their drift

and diffusion coefficients. By solving an inverse problem we find their explicit
form. It turns out that there exists no nontrivial interest rate model driven by

a consistent state space Itô process.

1. Introduction

Björk and Christensen (1999) introduce the following concept: letM be an interest
rate model and G a parameterized family of forward curves. M and G are called con-
sistent, if all forward rate curves which may be produced by M are contained within
G, provided that the initial forward rate curve lies in G. Under the assumption of
a deterministic volatility structure and working under a martingale measure, they
show that within the Heath–Jarrow–Morton (henceforth HJM) framework there
exists no nontrivial forward rate model, consistent with the Nelson–Siegel family
{F ( . , z)}. The curve shape of F ( . , z) is given by the well known expression

F (x, z) = z1 + z2e
−z4x + z3xe−z4x, (1)

introduced by Nelson and Siegel (1987).
For an optimal todays choice of the parameter z ∈ R4, expression (1) represents

the current term structure of interest rates, i.e. x ≥ 0 denotes time to maturity.
This method of fitting the forward curve is widely used among central banks, see
the BIS (1999) documentation.

From an economic point of view it seems reasonable to restrict z to the state
space Z := {z = (z1, . . . , z4) ∈ R4 | z4 > 0}.

The corresponding term structure of the bond prices is given by

G(x, z) := exp
(
−

∫ x

0

F (η, z) dη

)
.

Then G ∈ C∞([0,∞)×Z).
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In order to imply a stochastic evolution of the forward rates, we introduce in
Section 2 some state space process Z = (Zt)0≤t<∞ with values in Z and ask whether
F ( . , Z) provides an arbitrage-free interest rate model. We call Z consistent, if the
corresponding discounted bond prices are martingales, see Section 3. Solving an
inverse problem we characterize in Section 4 the class of consistent state space Itô
processes. Since a diffusion is a special Itô process, the very important class of
consistent state space diffusion processes is characterized as well. Still we are able
to derive a more general result. It turns out that all consistent Itô processes have
essentially deterministic dynamics. The corresponding interest rate models are in
turn trivial.

Consistent state space Itô processes are, by definition, specified under a mar-
tingale measure. This seems to be a restriction at first and one may ask wether
there exists any Itô process Z under some objective probability measure inducing
a nontrivial arbitrage free interest rate model F ( . , Z). However if the underlying
filtration is not too large we show in Section 5 that our (negative) result holds for
Itô processes modelled under any probability measure, provided that there exists
an equivalent martingale measure. Hence under the requirement of absence of ar-
bitrage there exists no nontrivial interest rate model driven by Itô processes and
consistent with the Nelson–Siegel family.

Using the same ideas, still larger classes of consistent processes like Itô processes
with jumps could be characterized.

2. The interest rate model

For the stochastic background and notations we refer to Revuz and Yor (1994)
and Jacod and Shiryaev (1987). Let (Ω,F , (Ft)0≤t<∞, P) be a filtered complete
probability space, satisfying the usual conditions, and let W = (W 1

t , . . . , W d
t )0≤t<∞

denote a standard d-dimensional (Ft)-Brownian motion, d ≥ 1.
We assume as given, an Itô process Z = (Z1, . . . , Z4) with values in the state

space Z of the form

Zi
t = Zi

0 +
∫ t

0

bi
s ds +

d∑
j=1

∫ t

0

σij
s dW j

s , i = 1, . . . , 4, 0 ≤ t < ∞, (2)

where Z0 is F0-measurable, and b, σ are progressively measurable processes with
values in R4, resp. R4×d, such that∫ t

0

(|bs|+ |σs|2
)
ds < ∞, P-a.s., for all finite t. (3)

Z could be for instance the (weak) solution of a stochastic differential equation,
but in general Z is not Markov.

Define by

r(t, x) := F (x, Zt)

the instantaneous forward rate at time t for date t + x.
It is shown in Delbaen and Schachermayer (1994), Section 7, that traded assets

have to follow semimartingales. Hence it is of importance for us to observe that
the price at time t for a zero coupon bond with maturity T

P (t, T ) := G(T − t, Zt), 0 ≤ t ≤ T < ∞,
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and the short rates

r(t, 0) = lim
x→0

r(t, x) = F (0, Zt) = − ∂

∂x
G(0, Zt), 0 ≤ t < ∞,

form continuous semimartingales, by the smoothness of F and G. Therefore the
same holds for the process of the savings account

B(t) := exp
(∫ t

0

r(s, 0) ds

)
, 0 ≤ t < ∞.

3. Consistent state space processes

We are going to define consistency in our context, which slightly differs from that
in Björk and Christensen (1999). We focus on the state space process Z, which
follows an Itô process or may follow some more general process.

Definition 3.1. Z is called consistent with the Nelson–Siegel family, if

(
P (t, T )
B(t)

)
0≤t≤T

is a P-martingale, for all T < ∞.

The next proposition is folklore in case that Z follows a diffusion process, i.e.
if bt(ω) = b(t, Zt(ω)) and σt(ω) = σ(t, Zt(ω)) for Borel mappings b and σ from
[0,∞)×Z into the corresponding spaces. That case usually leads to a PDE including
the generator of Z. The standard procedure is then to find a solution u (the term
structure of bond prices) to this PDE on (0,∞)×Z with initial condition u(0, . ) =
1. It is well known in the financial literature that Z is necessarily consistent with the
corresponding forward rate curve family. In contrast we ask the other way round
and are more general what concerns Z. Our aim is, given F , to derive conditions on
b and σ being necessary for consistency of Z with {F ( . , z)}z∈Z. But the coefficients
b and σ are progressively measurable processes. Hence Z given by (2) is not Markov,
i.e. there is no infinitesimal generator. By the nature of b and σ such conditions can
therefore only be stated dt⊗ dP-a.s. (note that equation (4) below is not a PDE).
On the other hand the argument mentioned in the diffusion case works just in one
direction: consistency of Z with a forward curve family G = {v( . , z)}z∈Z does not
imply validity of the PDE condition for u(x, z) = exp(− ∫ x

0
v(η, z) dη) in general.

Actually one could re-parameterize f(t, T ) := r(t, T − t), for 0 ≤ t ≤ T < ∞,
and work within the HJM framework. Equation (4) below corresponds to the well
known HJM drift condition for (f(t, T ))0≤t≤T . But as soon as Z is not an Itô
process anymore, this connection fails and one has to proceed like in the following
proof (see Remark 3.3), which therefore is given in its full form.

Set a := σσ∗, where σ∗ denotes the transpose of σ, i.e. aij
t =

∑d
k=1 σik

t σjk
t , for

1 ≤ i, j ≤ 4 and 0 ≤ t < ∞. Then a is a progressively measurable process with
values in the symmetric nonnegative definite 4 × 4-matrices.
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Proposition 3.2. Z is consistent with the Nelson–Siegel family only if

∂

∂x
F (x, Z) =

4∑
i=1

bi ∂

∂zi
F (x, Z)

+
1
2

4∑
i,j=1

aij

(
∂2

∂zi∂zj
F (x, Z)− ∂

∂zi
F (x, Z)

∫ x

0

∂

∂zj
F (η, Z) dη

− ∂

∂zj
F (x, Z)

∫ x

0

∂

∂zi
F (η, Z) dη

)
,

(4)

for all x ≥ 0, dt⊗ dP-a.s.

Proof. For f ∈ C2(Z) we set

At(ω)f(z) :=
4∑

i=1

bi
t(ω)

∂f

∂zi
(z) +

1
2

4∑
i,j=1

aij
t (ω)

∂2f

∂zi∂zj
(z), 0 ≤ t < ∞, z ∈ Z.

Using Itô’s formula we get for T < ∞

P (t, T ) = P (0, T ) +
∫ t

0

(AsG(T − s, Zs)− ∂

∂x
G(T − s, Zs)

)
ds

+
∫ t

0

σ∗s∇zG(T − s, Zs) dWs, 0 ≤ t ≤ T, P-a.s.,

where ∇z denotes the gradient with respect to (z1, z2, z3, z4), and

1
B(t)

= 1 +
∫ t

0

1
B(s)

∂

∂x
G(0, Zs) ds, 0 ≤ t < ∞, P-a.s.

For 0 ≤ t ≤ T define

H(t, T ) :=
1

B(t)

(
AtG(T − t, Zt)− ∂

∂x
G(T − t, Zt) +

∂

∂x
G(0, Zt)G(T − t, Zt)

)

and the local martingale

M(t, T ) :=
∫ t

0

1
B(s)

σ∗s∇zG(T − s, Zs) dWs.

Integration by parts then yields

1
B(t)

P (t, T ) = P (0, T ) +
∫ t

0

H(s, T ) ds + M(t, T ), 0 ≤ t ≤ T, P-a.s.

Let’s suppose now that Z is consistent. Then necessarily for T < ∞∫ t

0

H(s, T ) ds = 0, ∀t ∈ [0, T ], P-a.s. (5)

Since b and σ are progressive and G is smooth, H( . , T ) is progressively measurable
on [0, T ]×Ω. We claim that (5) yields

H( . , T ) = 0, on [0, T ]×Ω, dt⊗ dP-a.s. (6)

Proof of (6). Define N := {(t, ω) ∈ [0, T ]×Ω | H(t, T )(ω) > 0}. Then N is a B⊗F -
measurable set. Since H( . , T ) is positive on N we can use Tonelli’s theorem∫

N

H(t, T )(ω) dt⊗ dP =
∫

Ω

(∫
Nω

H(t, T )(ω) dt

)
dP(ω) = 0,
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where Nω := {t | (t, ω) ∈ N} ∈ B and we have used (5) and the inner regularity of
the measure dt. We therefore conclude that N has dt⊗ dP-measure zero. By using
a similar argument for −H( . , T ) we have proved (6).

Note that (6) holds for all T < ∞, where the dt⊗ dP-nullset depends on T . But
since H(t, T ) is continuous in T , a standard argument yields

H(t, t + x)(ω) = 0, ∀x ≥ 0, for dt⊗ dP-a.e. (t, ω).

Multiplying this equation with B(t) and using again the full form this reads

AG(x, Z)− ∂

∂x
G(x, Z) +

∂

∂x
G(0, Z)G(x, Z) = 0, ∀x ≥ 0, dt⊗ dP-a.s. (7)

Differentiation gives

∫ x

0

AF (η, Z) dη − 1
2

4∑
i,j=1

aij

(∫ x

0

∂

∂zi
F (η, Z) dη

)(∫ x

0

∂

∂zj
F (η, Z) dη

)

− F (x, Z) + F (0, Z) = 0, ∀x ≥ 0, dt⊗ dP-a.s.,

where we have divided by G(x, Z), since G > 0 on [0,∞)×Z. Differentiating with
respect to x finally yields (4).

Remark 3.3. Definition 3.1 can be extended in a natural way to a wider class of
state space processes Z. We mention here just two possible directions:

a) Z a time homogeneous Markov process with infinitesimal generator L. The
corresponding version of Proposition 3.2 can be formulated in terms of equa-
tion (7), where A has to be replaced by L. The difficulty here consists of
checking whether G goes well together with Z, i.e. x 7→ G(x, . ) has to be a
nice mapping from [0,∞) into the domain of L.

b) Z an Itô process with jumps. Again one could reformulate Proposition 3.2
on the basis of equation (7) by adding the corresponding stochastic integral
with respect to the compensator of the jump measure, which we assume to be
absolutely continuous with respect to dt. The jump measure could be implied
for example by a homogeneous Poisson process.

4. The class of consistent Itô processes

Equation (4) characterizes b and a, resp. σ, just up to a dt ⊗ dP-nullset. But the
stochastic integral in (2) is (up to indistinguishability) defined on the equivalence
classes with respect to the dt⊗ dP-nullsets. Hence this is enough to determine the
process Z, given Z0, uniquely (up to indistinguishability). On the other hand Z
cannot be represented in the form (2) with integrands that differ from b and σ on
a set with dt⊗ dP-measure strictly greater than zero (the characteristics of Z are
unique up to indistinguishability). Therefore it makes sense to pose the following
inverse problem on the basis of equation (4): For which choices of coefficients b and
σ do we get a consistent state space Itô process Z starting in Z0?

The answer is rather remarkable:
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Theorem 4.1. Let Z be a consistent Itô process. Then Z is of the form

Z1
t = Z1

0

Z2
t = Z2

0e
−Z4

0 t + Z3
0 te−Z4

0 t

Z3
t = Z3

0e
−Z4

0 t

Z4
t = Z4

0 +


∫ t

0

b4
s ds +

d∑
j=1

∫ t

0

σ4j
s dW j

s


 1Ω0

for all 0 ≤ t < ∞, where Ω0 := {Z2
0 = Z3

0 = 0}.
Remark 4.2. On Ω0 the processes Z2 and Z3 are zero. Hence F (x, Zt) = Z1

0 on
Ω0, i.e. the process Z4 has no influence on F ( . , Zt) on Ω0. So it holds that the
corresponding interest rate model is of the form

r(t, x) = F (x, Zt)

= Z1
0 +

(
Z2

0e−Z4
0 t + Z3

0 te−Z4
0 t

)
e−Z4

0x + Z3
0e−Z4

0 txe−Z4
0x

= Z1
0 + Z2

0e−Z4
0 (t+x) + Z3

0 (t + x)e−Z4
0 (t+x)

= r(0, t + x), ∀t, x ≥ 0,

and is therefore quasi deterministic, i.e. all randomness remains F0-measurable.

Remark 4.3. One can show a similar (negative) result even for the wider class of
state space Itô processes with jumps on a finite or countable mark space, see Remark
3.3. However allowing for more general exponential-polynomial families {F ( . , z)}
there exist (although very restricted) consistent Itô processes providing a nontrivial
interest rate model, see Filipović (1998).

Proof. Let Z be a consistent Itô process given by equation (2). The proof of the
theorem relies on expanding equation (4).

First of all we subtract ∂
∂xF (x, Z) from both sides of (4) to obtain a null equation.

Fix then a point (t, ω) in [0,∞)×Ω. For simplicity we write (z1, z2, z3, z4) for Zt(ω),
aij for aij

t (ω) and bi for bi
t(ω). Notice that Zt(ω) ∈ Z, i.e. z4 > 0. Observe then

that our null equation is in fact of the form

p1(x) + p2(x)e−z4x + p3(x)e−2z4x = 0, (8)

which has to hold simultaneously for all x ≥ 0. The expressions p1, p2 and p3

denote some polynomials in x, which depend on the zi’s, bi’s and aij ’s. Since the
functions {1, e−z4x, e−2z4x} are independent over the ring of polynomials, (8) can
only be satisfied if each of the pi’s is 0. This again yields that all coefficients of the
pi’s have to be zero. To proceed in our analysis we list all terms appearing in (4):

∂

∂x
F (x, z) = (−z2z4 + z3 − z3z4x)e−z4x,

∇zF (x, z) =
(
1, e−z4x, xe−z4x, (−z2x− z3x

2)e−z4x
)
,

∂2

∂zi∂zj
F (x, z) = 0, for 1 ≤ i, j ≤ 3,

∂

∂z4
∇zF (x, z) =

(
0,−xe−z4x,−x2e−z4x, (z2x

2 + z3x
3)e−z4x

)
.



A NOTE ON THE NELSON–SIEGEL FAMILY 7

Finally we need the relation∫ x

0

ηme−z4η dη = −qm(x)e−z4x +
m!

zm+1
4

, m = 0, 1, 2, . . . ,

where qm(x) =
∑m

k=0
m!

(m−k)!
xm−k

zk+1
4

is a polynomial in x of order m.
First we shall analyze p1. The terms that contribute to p1 are those containing

∂
∂z1

F (x, z) and ∂
∂z1

F (x, z)
∫ x

0
∂

∂zj
F (η, z) dη, for 1 ≤ j ≤ 4. Actually p1 is of the

form

p1(x) = a11x + · · ·+ b1,

where . . . stands for terms of zero order in x containing the factors a1j = aj1, for
1 ≤ j ≤ 4. It follows that a11 = 0. But the matrix (aij) has to be nonnegative
definite, so necessarily

a1j = aj1 = 0, for all 1 ≤ j ≤ 4,

and therefore also b1 = 0. Thus p1 is done.
The contributing terms to p3 are those containing ∂

∂zi
F (x, z)

∫ x

0
∂

∂zj
F (η, z) dη,

for 2 ≤ i, j ≤ 4. But observe that the degree of p3 and p2 depends on whether z2

or z3 are equal to zero or not. Hence we have to distinguish between the four cases

i) z2 6= 0, z3 6= 0 iii) z2 = 0, z3 6= 0

ii) z2 6= 0, z3 = 0 iv) z2 = z3 = 0.

case i): The degree of p3 is 4. The fourth order coefficient contains a44, i.e.

p3(x) = a44
z 2
3

z4
x4 + . . . ,

where . . . stands for terms of lower order in x. Hence

a4j = aj4 = 0, for 1 ≤ j ≤ 4.

The degree of p3 reduces to 2. The second order coefficient is a33
z4

. Hence
a3j = aj3 = 0, for 1 ≤ j ≤ 4. It remains p3(x) = a22

z4
. Thus the diffusion

matrix (aij) is zero. This implies that (σij) is zero, independent of the choice
of d (the number of Brownian motions in (2)). Now we can write down p2:

p2(x) = −b4z3x
2 + (b3 − b4z2 + z3z4)x + b2 + z2z4 − z3.

It follows that b4 = 0 and

b2 = z3 − z2z4,

b3 = −z3z4.

For the other three cases we will need the following lemma, which is a direct
consequence of the occupation times formula, see Revuz and Yor (1994), Corollary
(1.6), Chapter VI.

Lemma 4.4. Using the same notation as in (2), it holds for 1 ≤ i ≤ 4 that

aii1{Zi=0} = bi1{Zi=0} = 0, dt⊗ dP-a.s.

As a consequence, since we are characterizing a and b up to a dt ⊗ dP-nullset,
we may and will assume that zi = 0 implies aij = aji = bi = 0, for 1 ≤ j ≤ 4 and
i = 2, 3.
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case ii): We have ∇zF (x, z) = (1, e−z4x, xe−z4x,−z2xe−z4x). Hence the degree
of p3 is 2. Since a3j = aj3 = b3 = 0, for 1 ≤ j ≤ 4, the second order coefficient
comes from

−a44
∂

∂z4
F (x, z)

∫ x

0

∂

∂z4
F (η, z) dη = a44

z 2
2

z4
x2e−2z4x + . . . ,

where . . . denotes terms of lower order in x. Hence a4j = aj4 = 0, for
1 ≤ j ≤ 4. The polynomial p3 reduces to p3(x) = a22

z4
. It follows that also in

this case the diffusion matrix (aij) is zero. From case i) we derive immediately
that now

p2(x) = −b4z2x + b2 + z2z4,

hence b2 = −z2z4 and b4 = 0.
case iii): Since a2j = aj2 = b2 = 0, for 1 ≤ j ≤ 4, the zero order coefficient

of p2 reduces to −z3. We conclude that z2 = 0 implies z3 = 0, so this case
doesn’t enter dt⊗ dP-a.s.

case iv): In this case aij = bk = 0, for all (i, j) 6= (4, 4) and k 6= 4. Also
∂

∂z4
F (x, z) = ∂

∂xF (x, z) = 0. Hence p2(x) = p3(x) = 0, independently of the
choice of b4 and a44.

Summarizing the four cases we conclude that equation (4) implies

b1 = 0 b3 = −z3z4

b2 = z3 − z2z4 aij = 0, for (i, j) 6= (4, 4).

Whereas b4 and a44 are arbitrary real, resp. nonnegative real, numbers whenever
z2 = z3 = 0. Otherwise b4 = a44 = 0.

This has to hold for dt ⊗ dP-a.e. (t, ω). So Z is uniquely (up to indistinguisha-
bility) determined and satisfies

Z1
t = Z1

0

Z2
t = Z2

0 +
∫ t

0

(
Z3

s − Z2
sZ4

s

)
ds

Z3
t = Z3

0 −
∫ t

0

Z3
s Z4

s ds

Z4
t = Z4

0 +
∫ t

0

b4
s ds +

d∑
j=1

∫ t

0

σ4j
s dW j

s

for some progressively measurable processes b4 and σ4j, j = 1, . . . , d, being com-
patible with (3) and vanishing outside the set {(t, ω) | Z2

t (ω) = Z3
t (ω) = 0}.

Note that Z2 and Z3 satisfy (path-wise) a system of linear ODE’s with con-
tinuous coefficients. Hence they are indistinguishable from zero on Ω0. So the
statement of the theorem is proved on Ω0. It remains to prove it on Ω1 := Ω \ Ω0.

Introduce the stopping time τ := inf{s > 0 | Z2
s = Z3

s = 0}. We have just
argued that Ω0 ⊂ {τ = 0}. By continuity of Z also the reverse inclusion holds,
hence Ω0 = {τ = 0}. The stopped process Zτ =: Y satisfies (path-wise) the
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following system of linear stochastic integral equations

Y 1
t = Z1

0

Y 2
t = Z2

0 +
∫ t∧τ

0

(
Y 3

s − Y 2
s Z4

0

)
ds

Y 3
t = Z3

0 +
∫ t∧τ

0

Y 3
s Z4

0 ds

Y 4
t = Z4

0 , for 0 ≤ t < ∞.

(9)

We have used the fact that b4 = b41[τ,∞] and σ4 = σ41[τ,∞]. Then the last equation
follows from an elementary property of the stopped stochastic integral:

d∑
j=1

∫ t∧τ

0

σ4j
s dW j

s =
d∑

j=1

∫ t

0

(
σ4j

s 1[τ,∞]

)
1[0,τ ] dW j

s =
d∑

j=1

∫ t

0

σ4j
s 1[τ ] dW j

s = 0,

by continuity of W .
The system (9) has the unique solution for 0 ≤ t < ∞

Y 1
t = Z1

0

Y 2
t = Z2

0e−Z4
0 (t∧τ) + Z3

0 (t ∧ τ)e−Z4
0 (t∧τ)

Y 3
t = Z3

0e−Z4
0 (t∧τ)

Y 4
t = Z4

0 .

Since Z = Y on the stochastic interval [0, τ ] and since Yt 6= 0, ∀t < ∞, P-a.s. on
Ω1, it follows by the continuity of Z, that Ω1 = {τ > 0} = {τ = ∞}. Inserting this
in the above solution, the theorem is proved also on Ω1.

5. E-consistent Itô processes

Note that by definition Z is consistent if and only if P is a martingale measure for
the discounted bond price processes. We could generalize this definition and call a
state space process Z e-consistent if there exists an equivalent martingale measure
Q. Then obviously consistency implies e-consistency, and e-consistency implies the
absence of arbitrage opportunities, as it is well known.

In case where the filtration is generated by the Brownian motion W , i.e. (Ft) =
(FW

t ), we can give the following stronger result:

Proposition 5.1. If (Ft) = (FW
t ), then any e-consistent Itô process Z is of the

form as stated in Theorem 4.1. In particular the corresponding interest rate model
is purely deterministic.

Proof. Let Z be an e-consistent Itô process under P, and let Q be an equivalent
martingale measure. Since (Ft) = (FW

t ), we know that all P-martingales have the
representation property relative to W . By Girsanov’s theorem it follows therefore
that Z remains an Itô process under Q. In particular Z is a consistent state space
Itô process with respect to the stochastic basis (Ω,F , (FW

t )0≤t<∞, Q). Hence Z is
of the form as stated in Theorem 4.1.

Since FW
0 consists of sets of measure 0 or 1, the processes Z1, Z2, Z3 are (after

changing the Zi
0’s on a set of measure 0) purely deterministic and therefore also

(r(t, . ))0≤t<∞, see Remark 4.2.
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